// Copyright 2015 The Emscripten Authors. All rights reserved. // Emscripten is available under two separate licenses, the MIT license and the // University of Illinois/NCSA Open Source License. Both these licenses can be // found in the LICENSE file. // Pthread Web Worker startup routine: // This is the entry point file that is loaded first by each Web Worker // that executes pthreads on the Emscripten application. // Thread-local: var threadInfoStruct = 0; // Info area for this thread in Emscripten HEAP (shared). If zero, this worker is not currently hosting an executing pthread. var selfThreadId = 0; // The ID of this thread. 0 if not hosting a pthread. var parentThreadId = 0; // The ID of the parent pthread that launched this thread. var tempDoublePtr = 0; // A temporary memory area for global float and double marshalling operations. // Thread-local: Each thread has its own allocated stack space. var STACK_BASE = 0; var STACKTOP = 0; var STACK_MAX = 0; // These are system-wide memory area parameters that are set at main runtime startup in main thread, and stay constant throughout the application. var buffer; // All pthreads share the same Emscripten HEAP as SharedArrayBuffer with the main execution thread. var DYNAMICTOP_PTR = 0; var DYNAMIC_BASE = 0; var ENVIRONMENT_IS_PTHREAD = true; var PthreadWorkerInit = {}; // performance.now() is specced to return a wallclock time in msecs since that Web Worker/main thread launched. However for pthreads this can cause // subtle problems in emscripten_get_now() as this essentially would measure time from pthread_create(), meaning that the clocks between each threads // would be wildly out of sync. Therefore sync all pthreads to the clock on the main browser thread, so that different threads see a somewhat // coherent clock across each of them (+/- 0.1msecs in testing) var __performance_now_clock_drift = 0; // Cannot use console.log or console.error in a web worker, since that would risk a browser deadlock! https://bugzilla.mozilla.org/show_bug.cgi?id=1049091 // Therefore implement custom logging facility for threads running in a worker, which queue the messages to main thread to print. var Module = {}; // When error objects propagate from Web Worker to main thread, they lose helpful call stack and thread ID information, so print out errors early here, // before that happens. this.addEventListener('error', function(e) { if (e.message.indexOf('SimulateInfiniteLoop') != -1) return e.preventDefault(); var errorSource = ' in ' + e.filename + ':' + e.lineno + ':' + e.colno; console.error('Pthread ' + selfThreadId + ' uncaught exception' + (e.filename || e.lineno || e.colno ? errorSource : "") + ': ' + e.message + '. Error object:'); console.error(e.error); }); function threadPrint() { var text = Array.prototype.slice.call(arguments).join(' '); console.log(text); } function threadPrintErr() { var text = Array.prototype.slice.call(arguments).join(' '); console.error(text); console.error(new Error().stack); } function threadAlert() { var text = Array.prototype.slice.call(arguments).join(' '); postMessage({cmd: 'alert', text: text, threadId: selfThreadId}); } out = threadPrint; err = threadPrintErr; this.alert = threadAlert; Module['instantiateWasm'] = function(info, receiveInstance) { // Instantiate from the module posted from the main thread. // We can just use sync instantiation in the worker. instance = new WebAssembly.Instance(wasmModule, info); // We don't need the module anymore; new threads will be spawned from the main thread. wasmModule = null; receiveInstance(instance); // The second 'module' parameter is intentionally null here, we don't need to keep a ref to the Module object from here. return instance.exports; } var wasmModule; var wasmMemory; this.onmessage = function(e) { try { if (e.data.cmd === 'load') { // Preload command that is called once per worker to parse and load the Emscripten code. // Initialize the thread-local field(s): Module['tempDoublePtr'] = e.data.tempDoublePtr; // Initialize the global "process"-wide fields: Module['DYNAMIC_BASE'] = DYNAMIC_BASE = e.data.DYNAMIC_BASE; Module['DYNAMICTOP_PTR'] = DYNAMICTOP_PTR = e.data.DYNAMICTOP_PTR; // The Wasm module will have import fields for STACKTOP and STACK_MAX. At 'load' stage of Worker startup, we are just // spawning this Web Worker to act as a host for future created pthreads, i.e. we do not have a pthread to start up here yet. // (A single Worker can also host multiple pthreads throughout its lifetime, shutting down a pthread will not shut down its hosting Worker, // but the Worker is reused for later spawned pthreads). The 'run' stage below will actually start running a pthread. // The stack space for a pthread is allocated and deallocated when a pthread is actually run, not yet at Worker 'load' stage. // However, the WebAssembly module we are loading up here has import fields for STACKTOP and STACK_MAX, which it needs to get filled in // immediately at Wasm Module instantiation time. The values of these will not get used until pthread is actually running some code, so // we'll proceed to set up temporary invalid values for these fields for import purposes. Then whenever a pthread is launched at 'run' stage // below, these values are rewritten to establish proper stack area for the particular pthread. Module['STACK_MAX'] = Module['STACKTOP'] = 0x7FFFFFFF; // Module and memory were sent from main thread Module['wasmModule'] = wasmModule = e.data.wasmModule; Module['wasmMemory'] = wasmMemory = e.data.wasmMemory; Module['buffer'] = buffer = Module['wasmMemory'].buffer; Module['PthreadWorkerInit'] = PthreadWorkerInit = e.data.PthreadWorkerInit; if (typeof e.data.urlOrBlob === 'string') { importScripts(e.data.urlOrBlob); } else { var objectUrl = URL.createObjectURL(e.data.urlOrBlob); importScripts(objectUrl); URL.revokeObjectURL(objectUrl); } Module = OGVDecoderVideoVP9MTW(Module); PThread = Module['PThread']; HEAPU32 = Module['HEAPU32']; if (typeof FS !== 'undefined' && typeof FS.createStandardStreams === 'function') FS.createStandardStreams(); postMessage({ cmd: 'loaded' }); } else if (e.data.cmd === 'objectTransfer') { PThread.receiveObjectTransfer(e.data); } else if (e.data.cmd === 'run') { // This worker was idle, and now should start executing its pthread entry point. __performance_now_clock_drift = performance.now() - e.data.time; // Sync up to the clock of the main thread. threadInfoStruct = e.data.threadInfoStruct; Module['__register_pthread_ptr'](threadInfoStruct, /*isMainBrowserThread=*/0, /*isMainRuntimeThread=*/0); // Pass the thread address inside the asm.js scope to store it for fast access that avoids the need for a FFI out. selfThreadId = e.data.selfThreadId; parentThreadId = e.data.parentThreadId; // Establish the stack frame for this thread in global scope Module['STACK_BASE'] = STACK_BASE = Module['STACKTOP'] = STACKTOP = e.data.stackBase; Module['STACK_MAX'] = STACK_MAX = STACK_BASE + e.data.stackSize; // Call inside asm.js/wasm module to set up the stack frame for this pthread in asm.js/wasm module scope Module['establishStackSpace'](e.data.stackBase, e.data.stackBase + e.data.stackSize); // Also call inside JS module to set up the stack frame for this pthread in JS module scope Module['establishStackSpaceInJsModule'](e.data.stackBase, e.data.stackBase + e.data.stackSize); PThread.receiveObjectTransfer(e.data); PThread.setThreadStatus(Module['_pthread_self'](), 1/*EM_THREAD_STATUS_RUNNING*/); try { // pthread entry points are always of signature 'void *ThreadMain(void *arg)' // Native codebases sometimes spawn threads with other thread entry point signatures, // such as void ThreadMain(void *arg), void *ThreadMain(), or void ThreadMain(). // That is not acceptable per C/C++ specification, but x86 compiler ABI extensions // enable that to work. If you find the following line to crash, either change the signature // to "proper" void *ThreadMain(void *arg) form, or try linking with the Emscripten linker // flag -s EMULATE_FUNCTION_POINTER_CASTS=1 to add in emulation for this x86 ABI extension. var result = Module['dynCall_ii'](e.data.start_routine, e.data.arg); } catch(e) { if (e === 'Canceled!') { PThread.threadCancel(); return; } else if (e === 'SimulateInfiniteLoop' || e === 'pthread_exit') { return; } else { Atomics.store(HEAPU32, (threadInfoStruct + 4 /*C_STRUCTS.pthread.threadExitCode*/ ) >> 2, (e instanceof Module['ExitStatus']) ? e.status : -2 /*A custom entry specific to Emscripten denoting that the thread crashed.*/); Atomics.store(HEAPU32, (threadInfoStruct + 0 /*C_STRUCTS.pthread.threadStatus*/ ) >> 2, 1); // Mark the thread as no longer running. Module['_emscripten_futex_wake'](threadInfoStruct + 0 /*C_STRUCTS.pthread.threadStatus*/, 0x7FFFFFFF/*INT_MAX*/); // Wake all threads waiting on this thread to finish. if (!(e instanceof Module['ExitStatus'])) throw e; } } // The thread might have finished without calling pthread_exit(). If so, then perform the exit operation ourselves. // (This is a no-op if explicit pthread_exit() had been called prior.) if (!Module['noExitRuntime']) PThread.threadExit(result); } else if (e.data.cmd === 'cancel') { // Main thread is asking for a pthread_cancel() on this thread. if (threadInfoStruct && PThread.thisThreadCancelState == 0/*PTHREAD_CANCEL_ENABLE*/) { PThread.threadCancel(); } } else if (e.data.target === 'setimmediate') { // no-op } else if (e.data.cmd === 'processThreadQueue') { if (threadInfoStruct) { // If this thread is actually running? Module['_emscripten_current_thread_process_queued_calls'](); } } else { err('worker.js received unknown command ' + e.data.cmd); console.error(e.data); } } catch(e) { console.error('worker.js onmessage() captured an uncaught exception: ' + e); console.error(e.stack); throw e; } }